A R T I C L E S
Published on Web 12/31/2005

Synthesis, Structural, and Electron Topographical Analyses of a Dialkylbiaryl Phosphine/Arene-Ligated Palladium(I) Dimer: Enhanced Reactivity in Suzuki-Miyaura Coupling Reactions

Timothy E. Barder
Contribution from the Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Received September 3, 2005; E-mail: tbarder@mit.edu

Abstract

The treatment of bis(2-(dicyclohexylphosphino)-2',6'-dimethoxybiphenyl) PdCl_{2} with AgBF_{4} produces an air-stable phosphine/arene-ligated $\mathrm{Pd}(\mathrm{I})$ dimer with two seemingly identical Pd -arene interactions by X-ray crystallography. However, NMR and theoretical electron topographical analyses of this complex distinguish between these two interactions. One interaction is classified as an arenium-like complex, while the other is classified as a π-interaction. Additionally, this complex is a suitable precatalyst for high yielding Suzuki-Miyaura coupling reactions in short reaction times.

Phosphines as supporting ligands for metals, particularly palladium, have become ubiquitous in the field of cross-coupling chemistry. ${ }^{1}$ The continuing examination of structural features of catalyst systems that engender efficacy in coupling processes has become an essential element in ligand design. Particularly, creating not only an electron-rich phosphine center but also modifying other structural features of the phosphine ligand has been valuable in constructing efficient catalysts. In recent years, we have focused on increasing electron density and bulk on the biaryl backbone of 2-dialkylphosphino biaryls (Figure 1). ${ }^{2}$ These modifications have created highly reactive and stable catalyst systems for various Pd-catalyzed cross-coupling processes. Recently, we reported the X-ray crystal structure of $1 \cdot P d-$ (dba) ${ }^{2 \mathrm{~b}, 2 \mathrm{~d}}$ (where $\mathbf{1}=2$-(dicyclohexylphosphino)-2', 6^{\prime}-dimethoxybiphenyl and dba $=$ trans,trans-dibenzylideneacetone) which possesses an η^{1}-Pd interaction with the 1^{\prime} ipso carbon. Similar $\mathrm{Pd}-$ arene interactions exist with complexes composed of other 2-dicyclohexylphosphino biaryl ligands, such as $2 \cdot \mathrm{Pd}(\mathrm{dba})$ and $3 \cdot P d(d b a),{ }^{3}$ as well as with $\mathrm{MOP} \cdot P d(I I)$ and $\mathrm{MAP} \cdot P d(I I)$ complexes 4 (where MOP $=2$-diphenylphosphino-2'-methoxy-$1,1^{\prime}$-binaphthyl and MAP $=2$-diphenylphosphino- $2^{\prime}-N, N^{\prime}-$ (dimethylamino)-1, 1^{\prime}-binaphthyl). This unique interaction has been previously suggested to provide stability for the Pd center in both the $\operatorname{Pd}(\mathrm{II})$ and $\operatorname{Pd}(0)$ states; ${ }^{2 \mathrm{~b}, 4}$ however, little is known about the physical nature of $\mathrm{Pd}-$ arene interactions. In hopes to

[^0]

1

2

3

Figure 1. Recently developed 2-dicyclohexylphosphine biaryl ligands.
analyze and further understand these types of interactions, we sought to induce a $\mathrm{Pd}-$ arene interaction involving the electronrich bottom ring of $\mathbf{1}$ with a highly electrophilic $\mathrm{Pd}(\mathrm{II})$ center. Herein, we present our findings and analysis of this endeavor.

Synthesis of Complex 6. We recently reported the structure of $\mathbf{4},{ }^{2 \mathrm{~d}}$ which does not possess any Pd -arene interactions, as the nonphosphine containing ring of the ligand is pointed away from the Pd center. We envisioned treating this complex with a $\mathrm{Ag}(\mathrm{I})$ salt to prepare 5 (Figure 2). Complex 5 would possess a highly electrophilic Pd center, which could be stabilized by the nonphosphine containing rings of the ligands. However, when a mixture of 4 and AgBF_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred under argon at ambient temperature for 3 h , the desired product, 5, was not formed, but rather a $\operatorname{Pd}(\mathrm{I})$ dimer, $\mathbf{6}$, was produced. The deep red complex was isolated from an acetone/ether mixture at $-25^{\circ} \mathrm{C}$ and crystallized in $C 2 / c$ with two tetrafluoroborate counteranions and one acetone molecule. To our surprise, this complex is extremely air-stable in the solid state and solution (dichloromethane); no significant decomposition was observed within 1 week. We attribute this stability to the Pd -arene interactions which shield the Pd centers, thereby preventing them from interacting with oxygen or from self-aggregation.

The synthesis of an analogous dimer was attempted with $2-\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tri-isopropyl)-dicyclohexylphosphine as the supporting ligand. The reaction appeared to proceed smoothly; however, upon attempted isolation and crystallization, a mixture of Pd

Figure 2. Attempted (dashed arrow) and actual (solid arrow) reactions between AgBF_{4} and 4 (ORTEP diagram with hydrogens removed for clarity with thermal elliposoids at 30% probability) to produce a dicationic bis-phosphino Pd complex.

$$
\mathrm{Z}=\mathrm{CO}, \mathrm{H}, \mathrm{O}, \mathrm{Hal}, \mathrm{CNR}, \mathrm{PR}_{2}
$$

Figure 3. Various types of $\mathrm{Pd}(\mathrm{I})$ dimer complexes.
black and free ligand was observed. Additionally, ground-state geometry optimizations were performed on an analogous structure to 6 , but lacking the $2^{\prime}, 6^{\prime}$-dimethoxy groups. A stationary point was found possessing a similar arrangement of the ligands around the Pd centers relative to $\mathbf{6}$. However, the electron topographical analyses (namely the bond ellipticity values for the Pd -arene interactions) are drastically different for this structure than for $\mathbf{6}$, suggesting both interactions are π-interactions possessing some π-symmetry. ${ }^{6}$ These data may suggest that electron-donating groups on the $2^{\prime}, 6^{\prime}$ positions of the ligand are necessary to stabilize the Pd centers.

Background of Pd(I) Dimers. There have been numerous $\mathrm{Pd}(\mathrm{I})$ complexes prepared and characterized by X-ray crystallography in the past 60 years; ${ }^{5}$ however, the majority of these complexes contain a bridging ligand, which are often CO, hyride, oxygen, halides, isonitriles, and even phosphines (chelating and nonchelating) between the two Pd centers (Figure 3).

Additionally, olefins have been shown to act as bridging ligands between the two Pd centers. However, there have been very few reports of $\operatorname{Pd}(\mathrm{I})$ dimer "sandwich" complexes where both Pd centers are positioned between two arenes. One early report of a complex described by Allegra in 1965 and 1970^{7} is

[^1]that of $(\mathrm{Ph} \bullet \mathrm{Pd})_{2}\left(\mathrm{AlCl}_{4}\right)_{2}$ prepared by refluxing $\mathrm{PdCl}_{2}, \mathrm{Al}$, and AlCl_{3} in benzene. An X-ray crystal structure was obtained of this $\mathrm{Pd}(\mathrm{I})$ dimer which possessed indistinguishable $\mathrm{Pd}-\mathrm{C}_{1,1 \mathrm{~A}, 6,6 \mathrm{~A}}$ bond distances of $2.34 \AA$ (Figure 4a). More recently, a trinuclear Pd "sandwich" was reported by Sharp (Figure 4 b$)^{8}$ and a $\mathrm{Pd}(\mathrm{I})$ dimer "sandwich" with sulfur based ligands by Pfeffer (Figure $4 \mathrm{c}) .{ }^{9}$ Other interesting $\mathrm{Pd}(\mathrm{I})$ dimers possessing Pd -arene interactions include a (dppp•Pd) 2^{2+} complex from van Leeuwen (Figure 4d) ${ }^{10}$ and a biarylphosphine $\operatorname{Pd}(\mathrm{I})$ dimer complex possessing a bridging bromide from Vilar (Figure 4e) ${ }^{11}$ with similar Pd -arene bond lengths to $\mathbf{6}$.

Description of the X-ray Crystal Structure of 6. Complex 6 has a $\mathrm{Pd}-\mathrm{Pd}$ bond length of 2.7037(3) \AA, which is consistent with other $\mathrm{Pd}(\mathrm{I})$ dimers $\left(\mathrm{Pd}-\mathrm{Pd}_{\text {min }} 2.4878(7), \mathrm{Pd}-\mathrm{Pd}_{\text {max }} 3.1852-\right.$ (6) A)..12 There exists not only one but two Pd -arene interactions with the nonphosphine containing ring of the biaryl ligand. Curiously, the $\mathrm{Pd}-\mathrm{C}(10 \mathrm{~A})$ and $\mathrm{Pd}-\mathrm{C}(7)$ distances are nearly identical (2.1901(17) and 2.1970(16) \AA, respectively), which are substantially shorter than the $\mathrm{Pd}-\mathrm{P}$ bond length, 2.3045(4) \AA (Figure 5). The $\mathrm{Pd}-\mathrm{C}(8)$ and $\mathrm{Pd}-\mathrm{C}(9 \mathrm{~A})$ distances are 2.2989(16) and $2.3870(17) \AA$, respectively, which are within the sum of the van der Waals radii of Pd and carbon atoms. The $\mathrm{C}(7)-$ Pd1 bond length of $2.1970(16) \AA$ is also substantially shorter (by $0.177 \AA$) than the $\mathrm{C}(7)-\mathrm{Pd} 1$ bond length in the previously reported structure of $\mathbf{1} \bullet \mathrm{Pd}(\mathrm{dba}) .{ }^{2 \mathrm{~b}, \mathrm{~d}}$ Unlike the $\mathbf{1} \cdot \mathrm{Pd}(\mathrm{dba})$ X-ray crystal structure where little to no bond length deviations were observed in the nonphosphine containing ring of the ligand relative to 4 , which lacks a $\mathrm{Pd}-$ arene interaction, bond length deviations are observed in 6. The $\mathrm{C}(7)-\mathrm{C}$ (ortho) distances lengthen from to 1.397(3) and 1.399(3) \AA in 4 to 1.453(2) and $1.435(2) \AA$ in 6 , while the $\mathrm{O}-\mathrm{C}$ (ortho) distances shorten from $1.372(3)$ and $1.363(3) \AA$ in $\mathbf{4}$ to $1.345(2)$ and 1.348(2) \AA in $\mathbf{6}$.
(8) Kannan, S.; James, A. J.; Sharp, P. R. J. Am. Chem. Soc. 1998, 120, 215216.
(9) Dupont, J.; Pfeffer, M.; Rotteveel, M. C.; De Cian, A.; Fischer, J. Organometallics 1989, 8, 1116-1118.
(10) Budzelaar, P. H. M.; Van Leeuwen, P. W. N. M.; Roobeek, C. F.; Orpen, A. G. Organometallics 1992, 11, 23-25.
(11) Christmann, U.; Vilar, R.; White, A. J. P.; Williams, D. J. Chem. Commun. 2004, 1294-1295.
(12) Murahashi, T.; Otani, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 4536-4537.

(b)

(c)

(e)

Figure 4. Isolated and Characterized $\mathrm{Pd}(\mathrm{I})$ complexes.

Figure 5. ORTEP diagram of $\mathbf{6}$ with hydrogens, acetone, and tetrafluoroborate anions removed for clarity. Thermal ellipsoids at 50% probability.

Selected Bond Lengths (\AA) and Angles (deg)	
$\mathrm{Pd}(1)-\mathrm{Pd}(1 \mathrm{~A}) 2.7037(3)$	$\mathrm{Pd}(1)-\mathrm{P}(1) 2.3045(4)$
$\mathrm{Pd}(1)-\mathrm{C}(8) 2.2989(16)$	$\mathrm{Pd}(1)-\mathrm{C}(10 \mathrm{~A}) 2.1901(17)$
$\mathrm{Pd}(1)-\mathrm{C}(7) 2.1970(16)$	$\mathrm{Pd}(1)-\mathrm{C}(9 \mathrm{~A}) 2.3870(17)$
$\mathrm{C}(7)-\mathrm{C}(12) 1.453(2)$	$\mathrm{O}(1)-\mathrm{C}(12) 1.348(2)$
$\mathrm{C}(7)-\mathrm{C}(8) 1.435(2)$	$\mathrm{O}(2)-\mathrm{C}(8) 1.345(2)$
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Pd}(1 \mathrm{~A}) 169.596(12)$	$\mathrm{C}(7)-\mathrm{Pd}(1)-\mathrm{C}(10 \mathrm{~A}) 170.26(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Pd}(1) 114.32(11)$	$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{Pd}(1) 88.41$

These bond length deviations suggest an arenium ion ${ }^{13}$ (also commonly referred to as a σ complex or Wheland intermediate) has formed, where the bottom ring of the ligand has undergone electrophilic addition to the Pd center and is stabilized by an ortho methoxy group. The 172 ppm (broad singlet) ${ }^{13} \mathrm{C}$ NMR chemical shift of C 8 suggests substantial double bond character in the $\mathrm{O}(2)-\mathrm{C}(8)$ bond, which is consistent with the formation of a stabilized arenium ion. ${ }^{4}$ Further evidence from electron topography analyses for this complex existing as a stabilized arenium ion is provided below.

[^2]Suzuki-Miyaura Reactions Utilizing 6. As 6 is composed of a $1: 1$ ratio of ligand: Pd , which is believed to be the ratio of the active catalyst in cross-coupling reactions with 2-phosphinobiaryl based ligands, ${ }^{2 \mathrm{~d}, 14}$ Suzuki-Miyaura coupling reactions were attempted with $\mathbf{6}$ as the precatalyst. Heating the reaction mixture composed of an aryl boronic acid, aryl chloride, base, and 6 to temperatures $\geq 90^{\circ} \mathrm{C}$ caused rapid formation of Pd black, which is most likely due to the lack of excess ligand to stabilize the Pd after reduction to the zero oxidation state. However, decreasing the reaction temperature to $70{ }^{\circ} \mathrm{C}$ in toluene prevented the formation of Pd black, and reactions of even trisubstituted biaryls proceeded smoothly and very rapidly (Table 1, entry 1). This is further evidence that the catalytic cycle is composed of a monoligated-Pd rather than a bis-ligatedPd center as with other smaller ligands, i.e., triphenylphosphine or even tri-tert-butylphosphine. Additionally, arenes possessing sensitive functional groups, such as 3-chlorobenzaldehyde, reacted quickly with 2 -methoxyphenylboronic acid in 92% isolated yield using only $0.2 \% 6$ in 1 h at $70^{\circ} \mathrm{C}$ (Table 1, entry

[^3]Scheme 1. Proposed Reduction of 6 to $1 \cdot \operatorname{Pd}(0)$ by Phenylboronic Acid

Table 1. Suzuki-Miyaura Couplings Using 3 as the Precatalyst ${ }^{a}$
Entry Aryl Chloride Aryl Boronic Acid
${ }^{a}$ Reaction conditions: 1 mmol of $\mathrm{ArCl}, 1.5 \mathrm{mmol}$ of $\mathrm{ArB}(\mathrm{OH})_{2}, 2 \mathrm{mmol}$ of $\mathrm{K}_{3} \mathrm{PO}_{4}, 0.2 \mathrm{~mol} \% \mathbf{3}, 0.5 \mathrm{M} \mathrm{PhMe}, 70^{\circ} \mathrm{C}$.
3). Bis (phosphine) $-\mu$-bromide $\operatorname{Pd}(\mathrm{I})$ dimers have also been used in the amination of aryl halides, Suzuki-Miyaura coupling reactions, and α-arylation of ester enolates. ${ }^{10,15}$

In all examples in Table 1, the reaction mixture containing the red complex, 6, immediately changed color to yellow or beige upon heating. This color change is likely due to the rapid reduction of 6 to $1 \cdot \operatorname{Pd}(0)$ by the aryl boronic acid with concurrent generation of the respective biaryl (Scheme 1). Most likely, disproportionation occurs to form a monoligated- $\operatorname{Pd}(0)$ and a monoligated-Pd(II) species. Reduction of the $\mathrm{Pd}(\mathrm{II})$ species can then occur by the aryl boronic acid. To initially probe the activation of $\mathbf{6}$, the reaction of o-tolyl boronic acid and 2 -chloro-m-xylene with $0.2 \% 6$ was conducted at $40^{\circ} \mathrm{C}$ for 1 h . This reaction is identical to the reaction in Table 1, entry 1 (for which a 96% yield was obtained) except for the lower temperature. However, only $\sim 25 \%$ conversion of the aryl chloride was observed when the reaction temperature was $40^{\circ} \mathrm{C}$. Surprisingly, the much easier reaction of o-tolyl boronic acid with 4-nbutylchlorobenzene only proceeded to $\sim 50 \%$ conversion of aryl chloride using $0.2 \% 6$ in 1 h at $40^{\circ} \mathrm{C}$. Since disproportionation of 6 yields both a monoligated $\operatorname{Pd}(I I)$ and $\operatorname{Pd}(0)$ species (the presumed active catalyst), the reaction of o-tolyl boronic acid with 4-n-butylchlorobenzene should proceed very rapidly if disproportionation readily occurs at $40^{\circ} \mathrm{C}$ as there would be

[^4]$\sim 0.1 \%$ of the highly reactive monoligated- $\mathrm{Pd}(0)$ species present even if the reduction of the monoligated-Pd(II) species was difficult at this temperature. These results initially suggest that higher temperatures are required for the disproportionation of 6. However, as the reduction of biaryl phosphine $\mathrm{Pd}($ II) species (a key step in the mechanism proposed in Scheme 1) is not yet understood, further studies on the activation of $\mathbf{6}$ will be conducted after more data are amassed regarding the reduction of biaryl phosphine $\mathrm{Pd}(\mathrm{II})$ complexes.

Atoms in Molecules and ELF Analyses. To further explore the electronic nature of this complex, we turned to electron topography techniques. Although specialized high resolution X-ray diffraction techniques exist that locate bonding electrons, standard X-ray diffraction techniques only locate electron density surrounding but not between atoms (i.e., bonds). The theory of Atoms in Molecules developed by Bader ${ }^{16}$ allows for the topographical analysis of electron density, $\rho(r)$, and location and analysis of extrema, i.e., critical points, within the electron density. In particular, the existence of a bond path containing a bond critical point $(3,-1)$, where 3 is the rank, ω, i.e., number of nonzero eigenvalues (curvatures) in standard Cartesian coordinates, and -1 is the signature, σ, i.e., the sum of the signs of the three nonzero eigenvalues (curvatures), confirms the presence of a bonding interaction. However, the rank and signature do not allow for further analyses of the nature of the bond, and more in depth topographical values were required. Additionally, the electron localization function (ELF) of Becke and Edgecombe ${ }^{17}$ which was further developed by Silvi and Savin ${ }^{18}$ provides insight into the classification of chemical bonds by visualization of valence shell regions in molecules.

All calculations were conducted on a home-built Linux cluster consisting of 24 Xeon processors. The ground-state optimization of $(\mathbf{1})_{2} \mathrm{Pd}_{2}{ }^{2+}$ was completed using Gaussian 03^{19} with the B3LYP hybrid functional. ${ }^{20}$ For $\mathrm{C}, \mathrm{H}, \mathrm{O}$, and P atoms, the 6-31G(d) basis set was used, and for the Pd center, LANL2DZ+ ECP ${ }^{21}$ was employed. The X-ray structure coordinates were used as a starting point for the optimization which was constrained to $C 2$ symmetry. Due to the large size of this calculation, a
(16) Bader, R. F. W. Atoms in Molecules; Oxford Unversity Press: New York, 2003.
(17) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
(18) Silvi, B.; Savin, A. Nature 1994, 371, 683-686.
(19) Frisch, M. J., et al. Gaussian 03, revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
(20) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(21) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.

Figure 6. Contour diagrams of $\rho(r)[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]$ and $\nabla^{2} \rho(r)[\mathrm{e}, \mathrm{f}]$ (black contours $=$ positive values, green contours $=$ negative values) for various planes in 6. The red circles are $(3,-3)$ critical points, the blue triangles are $(3,-1)$ critical points, and the pink curve in [d] is the bond path connecting Pd1$\mathrm{C}(10 \mathrm{~A})$. Contour values for $[\mathrm{a}-\mathrm{d}]: 0.001,0.002,0.004,0.008,0.02,0.04,0.08,0.2,0.4,0.8$. Those for $[\mathrm{e}, \mathrm{f}]:-40,-20,-10 \ldots 10,20,40$.
frequency calculation to ensure all positive eigenvalues could not be conducted; however, $(\mathbf{1})_{2} \mathrm{Pd}_{2}{ }^{2+}$ was optimized to convergence criteria as follows: RMS force $=0.000003$ hartrees/ bohr and RMS atom displacement $=0.000343$ hartrees/radian, with $\partial E / \partial X_{n}=0.0(n=980)$. Subsequently, a single-point energy calculation with concurrent generation of a wave function file was conducted at $6-311++G(2 d, 2 p)$ for $\mathrm{C}, \mathrm{H}, \mathrm{O}$, and P and LANL2DZ $+E C P^{21}$ for Pd. The wave function file was analyzed by AIM2000. ${ }^{22}$ For the ELF analysis, a formatted checkpoint file was used employing the program DGrid 3.0. ${ }^{23}$ The files generated by these programs were visualized using VMD^{24} and MOLEKEL. ${ }^{25}$

It is important to note that the optimized structure of $\mathbf{6}$ is not identical to that of the X-ray crystal structure. ${ }^{26}$ However, the structure is very similar with key bond distance differences of $\mathrm{Pd} 1-\mathrm{C}(7) 0.06 \AA, \mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A}) 0.11 \AA$, and $\mathrm{Pd} 1-\mathrm{Pd} 1 \mathrm{~A} 0.15$ \AA. In the optimized structure, from which further discussion is based, the bond length difference between the $\mathrm{Pd} 1-\mathrm{C}(7)$ and $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ is only $0.06 \AA$.

Contour diagrams of $\rho(r)$ and $\nabla^{2} \rho(r)$ of four different planes containing the Pd center and carbon atoms nearest the metal center are depicted in Figure 6. The red circles represent (3, -3) critical points which are local maxima in $\rho(r)$, i.e., nuclei, while the blue triangles represent $(3,-1)$ critical points which are saddle points in $\rho(r)$. In Figure $6 \mathrm{a}-\mathrm{d}$ there exists only one

[^5]Table 2. Selected Topographical Values for $\mathbf{6}^{\mathbf{a}}$

$A_{i}-A_{j}$	r_{i}	r_{j}	$\rho\left(r_{\mathrm{c}}\right)$	$\nabla^{2} \rho\left(r_{\mathrm{c}}\right)$	λ_{1}	λ_{2}	λ_{3}	ϵ
$\mathrm{Pd}-\mathrm{C}(7)$	2.289	1.972	0.0740	0.1592	-0.0757	-0.0718	0.3066	0.0540

${ }^{a}$ All values in atomic units.
$(3,-1)$ critical point between $\mathrm{Pd} 1-\mathrm{C}(\mathrm{n}), n=7,10 \mathrm{~A}$. However, in Figure 6d, the contours to which the arrows point widen relative to those in Figure $6 \mathrm{a}-\mathrm{c}$. This is suggestive of the presence of an interaction between $\mathrm{Pd} 1-\mathrm{C}(9 \mathrm{~A})$, although neither a $(3,-1)$ nor a $(3,+1)$ critical point (i.e., a ring critical point $(3,+1)$ which would be present within the triangle formed by Pd1-C(10A)-C(9A)) could not be located despite numerous attempts. Additionally, the $(3,-1)$ critical point between Pd1$\mathrm{C}(10 \mathrm{~A})$ in Figure 6 c and 6 d does not lay directly on the Pd1$\mathrm{C}(10 \mathrm{~A})$ bond, as it does in Figure 6a and 6b, but is slightly shifted to the right, i.e, toward $\mathrm{C}(9 \mathrm{~A})$; the pink line in Figure 6 d depicts the actual bond path between $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$. This slight shift is noteworthy as is described in the following section. There are two striking differences in the plots of $\nabla^{2} \rho(r)$ for the $\mathrm{Pd} 1-\mathrm{C}(7)-\mathrm{C}(8)$ plane compared to the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ plane. The area of charge concentration between $\mathrm{C}(7)$ and Pd 1 (Figure 6e, leftmost arrow) is much greater than that compared to Figure 6f. Additionally, the contour to which the rightmost arrows point in Figure 6 e and 6 f encompasses the $\mathrm{C}(7)$ and $\mathrm{C}(8)$ atoms, while the corresponding contour in Figure 6 f surrounds the Pd center. This is likely due to the $(3,-1)$ critical point between $\mathrm{Pd} 1-C(10 A)$ slightly shifting toward $C(9 A)$, such that the bond is becoming more centered between $\mathrm{C}(10 \mathrm{~A})$ and $\mathrm{C}(9 \mathrm{~A})$ relative to the $\mathrm{Pd} 1-\mathrm{C}(7)$ bond.

Figure 7. Molecular orbital diagrams of $\mathbf{6}$, green $=$ carbon, red $=$ oxygen, pink $=$ phosphorus. The Pd centers are located within the surface of the MOs. (a) HOMO (-0.392 eV), (b) HOMO-1 (-0.399 eV).

Selected electron topographical values for $\mathbf{6}$ are presented in Table 2. The most striking values for $\mathbf{6}$ are the vastly different bond ellipticity values, ϵ, defined as $\left(\lambda_{1} / \lambda_{2}-1\right)$. The bond ellipticity is the ratio of the smallest eigenvalue to the other negative eigenvalue (only two negative eigenvalues exist for a bond critical point). By comparing λ_{1} and λ_{2}, i.e., the amount of depletion of electron density from the saddle point, in the direction of the two negative eigenvalues, the bond symmetry can be analyzed. If $\lambda_{1}=\lambda_{2}$, then $\epsilon=0$, which is the case for a pure sigma bond. For a pure sigma bond, the depletion of electron density from the bond critical point in the direction of the two negative eigenvalues is equal, which creates a cylindrical shape of electron density. However, if $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, then $\epsilon>0$ is obtained. In this case, the bond possesses varying amounts of π character; the greater the absolute value of the ratio of λ_{1} to λ_{2}, the greater the amount of π character. Hence, the cylindrical shape of electron density, observed when $\epsilon=0$, stretches to an ellipse. As a standard reference, in ethane, benzene, and ethylene, the $\mathrm{C}-\mathrm{C}$ bond critical points have values of $\epsilon=0.0,0.2,0.33 .{ }^{27}$

The values of ϵ for the $(3,-1)$ critical point of $\mathrm{Pd} 1-\mathrm{C}(7)$ and $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ of the ground-state optimized structure of 6 provide insight into the symmetry of the bond that is present. Namely, for the $\operatorname{Pd} 1-\mathrm{C}(7)$ bond, $\epsilon=0.0540$, while for the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ bond, a value nearly 4 times greater is observed, $\epsilon=0.1754$. This difference is substantial as both the $\mathrm{Pd}-\mathrm{C}(7)$ and $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ bonds are identical in length in the X-ray crystal structure and very similar in the optimized structure $(\operatorname{Pd} 1-\mathrm{C}(7) 2.25 \AA, \operatorname{Pd}-\mathrm{C}(10 \mathrm{~A}) 2.31 \AA)$. Additionally, the value of $\rho\left(r_{\mathrm{c}}\right)$ for the $\mathrm{Pd} 1-\mathrm{C}(7)$ bond critical point is slightly greater (0.0128), suggesting a stronger bond than $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$. The large difference in bond ellipticity, difference in $\rho\left(r_{\mathrm{c}}\right)$ for the $(3,-1)$ critical points of $\mathrm{Pd} 1-\mathrm{C}(7)$ and $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$, and shift of the $(3,-1)$ bond critical point toward $\mathrm{C}(9 \mathrm{~A})$ are strong indications that the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ bond is composed of some π character while the $\mathrm{Pd} 1-\mathrm{C}(7)$ bond is composed of mostly σ character. This concept is consistent with the ${ }^{13} \mathrm{C}$ NMR spectrum obtained of $\mathbf{6}$, as described above. The upper half of the aromatic ring ($\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$) of the ligand exists as an arenium ion (hence the mainly σ character in the $\mathrm{Pd}-\mathrm{C}(7)$ bond) with the Pd center stabilized by an ortho methoxy group. However, the lower half of the aromatic ring $(\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11)$ of the ligand interacts with the Pd centers through both a cylindrical $\mathrm{C} 10\left(\mathrm{p}_{z}\right)$ (the arrow pointing to the blue surface from C10 in Figure 7a) orbital and an elliptical-like orbital (the arrow pointing to the white surface from C10 in Figure 7b) residing on C10 and C9.

[^6]

Figure 8. Electron localization function (ELF) plots of the nonphosphine containing ring of the ligand in $\mathbf{6}$, torquoise $=$ carbon - carbon bonds and red $=$ oxygen - carbon bonds. ELF isosurface value (a) 0.67 , (b) 0.70 , (c) 0.74 , (d) 0.78 .

The contributions from both the HOMO and HOMO-1, which are very similar in energy (0.007 eV difference), may produce an elliptical-like orbital, residing mainly on C10 and slightly on C9. This orbital may interact with the Pd center, causing the value of ϵ at the $(3,-1)$ critical point between $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ to be nearly 4 times greater than that at the $(3,-1)$ critical point between $\mathrm{Pd} 1-\mathrm{C}(7)$. Additionally, the presence of this elliptical-like orbital helps explains the shifting of the $(3,-1)$ critical point toward $\mathrm{C}(9 \mathrm{~A})$ thereby creating a bond possessing some π symmetry.

Finally, we plotted the electron localization function (ELF) to assist in visualizing the valence shell regions of the nonphosphine containing ring of the ligand in 6 (Figure 8). Figure 8a-d clearly depict ELF isosurfaces encapsulating C(7), while no such encapsulation exists around $\mathrm{C}(10)$. The lack of encapsulation around $\mathrm{C}(10)$ is likely due to the $\mathrm{C} 10\left(\mathrm{p}_{z}\right)$ orbital being utilized in the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ interaction, i.e., the valence shell electrons are occupied in the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ interaction. However, as the $\mathrm{Pd} 1-(\mathrm{C} 7)$ bond is mainly a σ interaction, the valence shell electrons of $C(7)$ are accessible and are able to be visualized.

In conclusion, we have synthesized and characterized a novel phosphine/arene ligated $\mathrm{Pd}(\mathrm{I})$ dimer in the solid and solution state. This dimer is a suitable precatalyst for efficient and rapid Suzuki-Miyaura cross-coupling reactions. Additionally, electron topography studies were conducted that shed light on the true
nature of the seemingly identical two arene-Pd interactions. The solid and solution state experimental data agree well with the theoretical data: although two bonds may be nearly identical in bond length and type of atoms involved, the electronic properties of the bond are ever so important in determining the nature of the bond. Namely, we classify the Pd-arene interaction with proximal methoxy groups as an arenium ion (σ complex), while the Pd -arene interaction distal from the methoxy groups is mainly a π interaction possessing some π symmetry due the indirect bond path linking Pd1-C(10A). Further analyses to determine the importance of Pd -arene interactions of dialkylbiaryl phosphine ligated Pd complexes that lay within the catalytic cycles of amination and SuzukiMiyaura coupling reactions are in progress.

Acknowledgment. We thank the National Institutes of Health (GM 46059) for support for this work. We are grateful to Merck for additional support. We thank Engelhard for supplying the
PdCl_{2} used in this work. T.E.B. is grateful to Professor Steve Buchwald for the freedom that made this work possible as well as his support and encouragement. T.E.B. also thanks Professor Kit Cummins for providing insightful advice, Professor Ged Parkin for stimulating discussions, and Drs. Bill Davis and Peter Müller for assistance with the solvent disorders in the X-ray crystal structures. Additionally, T.E.B. thanks one of the reviewers for suggesting important and insightful experiments regarding the activation of 6 .

Supporting Information Available: Experimental procedures, spectral data, coordinates for the calculated structures, X-ray crystal structure data (PDF), and the complete list of authors for ref 18. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0558995

[^0]: (1) (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340-348. (b) Negishi, E.; de Meijere, A., Eds. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: New York, 2002. (c) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the $21^{\text {st }}$ Century; John Wiley \& Sons Ltd.: Chichester, West Sussex, U.K., 2004.
 (2) (a) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653-6655. (b) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L Angew. Chem., Int. Ed. 2004, 43, 1871-1876. (c) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028-13032. (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696.
 (3) Barder, T. E.; Buchwald, S. L. Unpublished results.
 (4) Kocovsky, P.; Vyskocil, S.; Cisarova, I.; Sejbal, J.; Tislerova, I.; Smrcina, M.; Lloyd-Jones, G. C.; Stephen, S. C.; Butts, C. P.; Murray, M.; Langer, V. J. Am. Chem. Soc. 1999, 121, 7714-7715.

[^1]: (5) (a) Murahashi, T.; Kurosawa, H. Coord. Chem. Rev. 2002, 231, 207-228. (b) Kurosawa, H. J. Organomet. Chem. 2004, 689, 4511-4520.
 (6) The Cartesian coordinates for this optimized structure are included in the Supporting Information. Additionally, the bond ellipticity for the Pd1$\mathrm{C}(7)$ bond critical point is very large (1.042) and for the $\mathrm{Pd} 1-\mathrm{C}(10 \mathrm{~A})$ bond critical point is much smaller (0.2128). The $\mathrm{Pd} 1-\mathrm{C}(7)$ value clearly illustrates that an elliptical-like orbital (residing both on C7 and C8, but with only one bond critical point to Pd) is interacting with the Pd center, in direct contrast to $\mathbf{6}$. For comparison, in the optimized structure of $\mathbf{1} \bullet \mathrm{Pd}-$ $(\mathrm{dba}),{ }^{2 \mathrm{~d}}$ where $\mathrm{dba}=$ trans,trans-dibenzylidineacetone, there exists an η^{2} interaction between Pd and one of the olefins of dba where the $\mathrm{Pd}-\mathrm{C}$ bond critical points have ellipticity values of 0.7829 and 0.3077 .
 (7) (a) Allegra, G.; Immirzi, A.; Porri, L. J. Am. Chem. Soc. 1965, 87, 13941395. (b) Allegra, G.; Cassagrande, G. T.; Immirzi, A.; Porri, L.; Vitulli, G. J. Am. Chem. Soc. 1970, 92, 289-293.

[^2]: (13) Olah, G. A. J. Am. Chem. Soc. 1971, 94, 808-820.

[^3]: (14) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978-13980 and references therein.

[^4]: (15) (a) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861-2873. (b) Jørgensen, M.; Lee, S.; Liu, X.-X.; Wolkowski, J. P.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 12557-12565. (c) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2002, 41, 4746 4748.

[^5]: (22) Biegler-König, F.; Schönbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545-559.
 (23) Kohout, M. DGRID, edition 3.0; Max Planck Institute of Chemical Physics of Solids: Dresden, 2005.
 (24) Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33-38.
 (25) Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. MOLEKEL 4.0; Swiss Center for Scientific Computing: Manno, Switzerland, 2000.
 (26) See the Supporting Information for the Cartesian coordinates for the optimized structure of $(1 \cdot P d)_{2}{ }^{2+}$.

[^6]: (27) Koritsanszky, T.; Buschmann, J.; Luger, P. J. Phys. Chem. 1996, 100, 10547-10553.

